Deploy a Local Cluster in Kubernetes

On this page Carat arrow pointing down

On top of CockroachDB's built-in automation, you can use a third-party orchestration system to simplify and automate even more of your operations, from deployment to scaling to overall cluster management.

This page demonstrates a basic integration with the open-source Kubernetes orchestration system. Using either the CockroachDB Helm chart or a few configuration files, you'll quickly create a 3-node local cluster. You'll run some SQL commands against the cluster and then simulate node failure, watching how Kubernetes auto-restarts without the need for any manual intervention. You'll then scale the cluster with a single command before shutting the cluster down, again with a single command.

Note:

To orchestrate a physically distributed cluster in production, see Orchestrated Deployments. To deploy a 30-day free CockroachDB Dedicated cluster instead of running CockroachDB yourself, see the Quickstart.

Limitations

Kubernetes version

To deploy CockroachDB v23.1, Kubernetes 1.18 or higher is required. Cockroach Labs strongly recommends that you use a Kubernetes version that is eligible for patch support by the Kubernetes project.

Kubernetes Operator

  • The CockroachDB Kubernetes Operator currently deploys clusters in a single region. For multi-region deployments using manual configs, see Orchestrate CockroachDB Across Multiple Kubernetes Clusters.

  • Using the Operator, you can give a new cluster an arbitrary number of labels. However, a cluster's labels cannot be modified after it is deployed. To track the status of this limitation, refer to #993 in the Operator project's issue tracker.

Helm version

The CockroachDB Helm chart requires Helm 3.0 or higher. If you attempt to use an incompatible Helm version, an error like the following occurs:

Error: UPGRADE FAILED: template: cockroachdb/templates/tests/client.yaml:6:14: executing "cockroachdb/templates/tests/client.yaml" at <.Values.networkPolicy.enabled>: nil pointer evaluating interface {}.enabled

The CockroachDB Helm chart is currently not under active development, and no new features are planned. However, Cockroach Labs remains committed to fully supporting the Helm chart by addressing defects, providing security patches, and addressing breaking changes due to deprecations in Kubernetes APIs.

A deprecation notice for the Helm chart will be provided to customers a minimum of 6 months in advance of actual deprecation.

Network

Service Name Indication (SNI) is an extension to the TLS protocol which allows a client to indicate which hostname it is attempting to connect to at the start of the TCP handshake process. The server can present multiple certificates on the same IP address and TCP port number, and one server can serve multiple secure websites or API services even if they use different certificates.

Due to its order of operations, the PostgreSQL wire protocol's implementation of TLS is not compatible with SNI-based routing in the Kubernetes ingress controller. Instead, use a TCP load balancer for CockroachDB that is not shared with other services.

Resources

When starting Kubernetes, select machines with at least 4 vCPUs and 16 GiB of memory, and provision at least 2 vCPUs and 8 Gi of memory to CockroachDB per pod. These minimum settings are used by default in this deployment guide, and are appropriate for testing purposes only. On a production deployment, you should adjust the resource settings for your workload. For details, see Resource management.

Storage

Kubernetes deployments use external persistent volumes that are often replicated by the provider. CockroachDB replicates data automatically, and this redundant layer of replication can impact performance. Using local volumes may improve performance.

Before you begin

Before getting started, it's helpful to review some Kubernetes-specific terminology:

Feature Description
minikube A tool commonly used to run a Kubernetes cluster on a local workstation.
pod A pod is a group of one of more containers managed by Kubernetes. In this tutorial, all pods run on your local workstation. Each pod contains a single container that runs a single-node CockroachDB cluster. You'll start with 3 pods and grow to 4.
StatefulSet A StatefulSet is a group of pods treated as stateful units, where each pod has distinguishable network identity and always binds back to the same persistent storage on restart.
persistent volume A persistent volume is storage mounted in a pod and available to its containers. The lifetime of a persistent volume is decoupled from the lifetime of the pod that's using it, ensuring that each CockroachDB node binds back to the same storage on restart.

When using minikube, persistent volumes are external temporary directories that endure until they are manually deleted or until the entire Kubernetes cluster is deleted.
persistent volume claim When e pod is created, it requests a persistent volume claim to claim durable storage for its node.

Step 1. Start Kubernetes

  1. Follow the Minikube documentation to install the latest version of minikube, a hypervisor, and the kubectl command-line tool.

  2. Start a local Kubernetes cluster:

    icon/buttons/copy
    minikube start
    

Step 2. Start CockroachDB

Choose a way to deploy and maintain the CockroachDB cluster:

Install the Operator

  1. Apply the custom resource definition (CRD) for the Operator:

    icon/buttons/copy
    $ kubectl apply -f https://raw.githubusercontent.com/cockroachdb/cockroach-operator/v2.16.1/install/crds.yaml
    
    customresourcedefinition.apiextensions.k8s.io/crdbclusters.crdb.cockroachlabs.com created
    
  2. By default, the Operator is configured to install in the cockroach-operator-system namespace and to manage CockroachDB instances for all namespaces on the cluster.

    • To use these defaults, apply the Operator manifest without modifying it:
      icon/buttons/copy

      kubectl apply -f https://raw.githubusercontent.com/cockroachdb/cockroach-operator/v2.16.1/install/operator.yaml
      
      clusterrole.rbac.authorization.k8s.io/cockroach-database-role created
      serviceaccount/cockroach-database-sa created
      clusterrolebinding.rbac.authorization.k8s.io/cockroach-database-rolebinding created
      role.rbac.authorization.k8s.io/cockroach-operator-role created
      clusterrolebinding.rbac.authorization.k8s.io/cockroach-operator-rolebinding created
      clusterrole.rbac.authorization.k8s.io/cockroach-operator-role created
      serviceaccount/cockroach-operator-sa created
      rolebinding.rbac.authorization.k8s.io/cockroach-operator-default created
      deployment.apps/cockroach-operator created
      

    • To change these defaults:
      1. Download the Operator manifest:
        icon/buttons/copy

        curl -O https://raw.githubusercontent.com/cockroachdb/cockroach-operator/v2.16.1/install/operator.yaml
        

      2. To use a custom namespace, edit all instances of namespace: cockroach-operator-system with your desired namespace.
      3. To limit the namespaces that will be monitored, set the WATCH_NAMESPACE environment variable in the Deployment pod spec. This can be set to a single namespace or a comma-delimited set of namespaces. When set, only those CrdbCluster resources in the supplied namespace(s) will be reconciled.
      4. Apply your local version of the Operator manifest to the cluster:
        icon/buttons/copy

        kubectl apply -f operator.yaml
        

  3. Set your current namespace to the one used by the Operator. For example, to use the Operator's default namespace:

    icon/buttons/copy
    $ kubectl config set-context --current --namespace=cockroach-operator-system
    
  4. Validate that the Operator is running:

    icon/buttons/copy
    $ kubectl get pods
    
    NAME                                  READY   STATUS    RESTARTS   AGE
    cockroach-operator-6f7b86ffc4-9ppkv   1/1     Running   0          54s
    

Initialize the cluster

Note:

After a cluster managed by the Kubernetes operator is initialized, its Kubernetes labels cannot be modified. For more details, refer to Limitations.

  1. Download example.yaml, a custom resource that tells the Operator how to configure the Kubernetes cluster.

    icon/buttons/copy
    $ curl -O https://raw.githubusercontent.com/cockroachdb/cockroach-operator/v2.16.1/examples/example.yaml
    

    By default, this custom resource specifies CPU and memory resources that are appropriate for the virtual machines used in this deployment example. On a production cluster, you should substitute values that are appropriate for your machines and workload. For details on configuring your deployment, see Configure the Cluster.

    Note:

    By default, the Operator will generate and sign 1 client and 1 node certificate to secure the cluster. This means that if you do not provide a CA, a cockroach-generated CA is used. If you want to authenticate using your own CA, specify the generated secrets in the custom resource before proceeding to the next step.

  2. Apply example.yaml:

    icon/buttons/copy
    $ kubectl apply -f example.yaml
    

    The Operator will create a StatefulSet and initialize the nodes as a cluster.

    crdbcluster.crdb.cockroachlabs.com/cockroachdb created
    
  3. Check that the pods were created:

    icon/buttons/copy
    $ kubectl get pods
    
    NAME                                  READY   STATUS    RESTARTS   AGE
    cockroach-operator-6f7b86ffc4-9t9zb   1/1     Running   0          3m22s
    cockroachdb-0                         1/1     Running   0          2m31s
    cockroachdb-1                         1/1     Running   0          102s
    cockroachdb-2                         1/1     Running   0          46s
    

    Each pod should have READY status soon after being created.

Configure the cluster

  1. Download and modify our StatefulSet configuration:

    icon/buttons/copy
    $ curl -O https://raw.githubusercontent.com/cockroachdb/cockroach/master/cloud/kubernetes/bring-your-own-certs/cockroachdb-statefulset.yaml
    
  2. Update secretName with the name of the corresponding node secret.

    The secret names depend on your method for generating secrets. For example, if you follow the below steps using cockroach cert, use this secret name:

    icon/buttons/copy
    secret:
      secretName: cockroachdb.node
    
  3. The StatefulSet configuration deploys CockroachDB into the default namespace. To use a different namespace, search for kind: RoleBinding and change its subjects.namespace property to the name of the namespace. Otherwise, a failed to read secrets error occurs when you attempt to follow the steps in Initialize the cluster.

Note:

By default, this manifest specifies CPU and memory resources that are appropriate for the virtual machines used in this deployment example. On a production cluster, you should substitute values that are appropriate for your machines and workload. For details on configuring your deployment, see Configure the Cluster.

Create certificates

Tip:

The StatefulSet configuration sets all CockroachDB nodes to log to stderr, so if you ever need access to a pod/node's logs to troubleshoot, use kubectl logs <podname> rather than checking the log on the persistent volume.

Note:

The below steps use cockroach cert commands to quickly generate and sign the CockroachDB node and client certificates. Read our Authentication docs to learn about other methods of signing certificates.

  1. Create two directories:

    icon/buttons/copy
    $ mkdir certs my-safe-directory
    
    Directory Description
    certs You'll generate your CA certificate and all node and client certificates and keys in this directory.
    my-safe-directory You'll generate your CA key in this directory and then reference the key when generating node and client certificates.
  2. Create the CA certificate and key pair:

    icon/buttons/copy
    $ cockroach cert create-ca \
    --certs-dir=certs \
    --ca-key=my-safe-directory/ca.key
    
  3. Create a client certificate and key pair for the root user:

    icon/buttons/copy
    $ cockroach cert create-client \
    root \
    --certs-dir=certs \
    --ca-key=my-safe-directory/ca.key
    
  4. Upload the client certificate and key to the Kubernetes cluster as a secret:

    icon/buttons/copy
    $ kubectl create secret \
    generic cockroachdb.client.root \
    --from-file=certs
    
    secret/cockroachdb.client.root created
    
  5. Create the certificate and key pair for your CockroachDB nodes:

    icon/buttons/copy
    $ cockroach cert create-node \
    localhost 127.0.0.1 \
    cockroachdb-public \
    cockroachdb-public.default \
    cockroachdb-public.default.svc.cluster.local \
    *.cockroachdb \
    *.cockroachdb.default \
    *.cockroachdb.default.svc.cluster.local \
    --certs-dir=certs \
    --ca-key=my-safe-directory/ca.key
    
  6. Upload the node certificate and key to the Kubernetes cluster as a secret:

    icon/buttons/copy
    $ kubectl create secret \
    generic cockroachdb.node \
    --from-file=certs
    
    secret/cockroachdb.node created
    
  7. Check that the secrets were created on the cluster:

    icon/buttons/copy
    $ kubectl get secrets
    
    NAME                      TYPE                                  DATA   AGE
    cockroachdb.client.root   Opaque                                3      41m
    cockroachdb.node          Opaque                                5      14s
    default-token-6qjdb       kubernetes.io/service-account-token   3      4m
    

Initialize the cluster

  1. Use the config file you downloaded to create the StatefulSet that automatically creates 3 pods, each running a CockroachDB node:

    icon/buttons/copy
    $ kubectl create -f cockroachdb-statefulset.yaml
    
    serviceaccount/cockroachdb created
    role.rbac.authorization.k8s.io/cockroachdb created
    rolebinding.rbac.authorization.k8s.io/cockroachdb created
    service/cockroachdb-public created
    service/cockroachdb created
    poddisruptionbudget.policy/cockroachdb-budget created
    statefulset.apps/cockroachdb created
    
  2. Initialize the CockroachDB cluster:

    1. Confirm that three pods are Running successfully. Note that they will not be considered Ready until after the cluster has been initialized:

      icon/buttons/copy
      $ kubectl get pods
      
      NAME            READY     STATUS    RESTARTS   AGE
      cockroachdb-0   0/1       Running   0          2m
      cockroachdb-1   0/1       Running   0          2m
      cockroachdb-2   0/1       Running   0          2m
      
    2. Confirm that the persistent volumes and corresponding claims were created successfully for all three pods:

      icon/buttons/copy
      $ kubectl get pv
      
      NAME                                       CAPACITY   ACCESS MODES   RECLAIM POLICY   STATUS   CLAIM                           STORAGECLASS   REASON   AGE
      pvc-9e435563-fb2e-11e9-a65c-42010a8e0fca   100Gi      RWO            Delete           Bound    default/datadir-cockroachdb-0   standard                51m
      pvc-9e47d820-fb2e-11e9-a65c-42010a8e0fca   100Gi      RWO            Delete           Bound    default/datadir-cockroachdb-1   standard                51m
      pvc-9e4f57f0-fb2e-11e9-a65c-42010a8e0fca   100Gi      RWO            Delete           Bound    default/datadir-cockroachdb-2   standard                51m
      
    3. Run cockroach init on one of the pods to complete the node startup process and have them join together as a cluster:

      icon/buttons/copy
      $ kubectl exec -it cockroachdb-0 \
      -- /cockroach/cockroach init \
      --certs-dir=/cockroach/cockroach-certs
      
      Cluster successfully initialized
      
    4. Confirm that cluster initialization has completed successfully. The job should be considered successful and the Kubernetes pods should soon be considered Ready:

      icon/buttons/copy
      $ kubectl get pods
      
      NAME            READY     STATUS    RESTARTS   AGE
      cockroachdb-0   1/1       Running   0          3m
      cockroachdb-1   1/1       Running   0          3m
      cockroachdb-2   1/1       Running   0          3m
      

The CockroachDB Helm chart is compatible with all Kubernetes versions that are supported by the Kubernetes project when cert-manager is used for mTLS.

The CockroachDB Helm chart is currently not under active development, and no new features are planned. However, Cockroach Labs remains committed to fully supporting the Helm chart by addressing defects, providing security patches, and addressing breaking changes due to deprecations in Kubernetes APIs.

A deprecation notice for the Helm chart will be provided to customers a minimum of 6 months in advance of actual deprecation.

Warning:

If you are running a secure Helm deployment on Kubernetes 1.22 and later, you must migrate away from using the Kubernetes CA for cluster authentication. The recommended approach is to use cert-manager for certificate management. For details, refer to Deploy cert-manager for mTLS.

  1. Install the Helm client (version 3.0 or higher) and add the cockroachdb chart repository:

    icon/buttons/copy
    $ helm repo add cockroachdb https://charts.cockroachdb.com/
    
    "cockroachdb" has been added to your repositories
    
  2. Update your Helm chart repositories to ensure that you're using the latest CockroachDB chart:

    icon/buttons/copy
    $ helm repo update
    
  3. The cluster configuration is set in the Helm chart's values file.

    Note:

    By default, the Helm chart specifies CPU and memory resources that are appropriate for the virtual machines used in this deployment example. On a production cluster, you should substitute values that are appropriate for your machines and workload. For details on configuring your deployment, see Configure the Cluster.

    Before deploying, modify some parameters in our Helm chart's values file:

    1. Create a local YAML file (e.g., my-values.yaml) to specify your custom values. These will be used to override the defaults in values.yaml.
    2. To avoid running out of memory when CockroachDB is not the only pod on a Kubernetes node, you must set memory limits explicitly. This is because CockroachDB does not detect the amount of memory allocated to its pod when run in Kubernetes. We recommend setting conf.cache and conf.max-sql-memory each to 1/4 of the memory allocation specified in statefulset.resources.requests and statefulset.resources.limits.

      Tip:

      For example, if you are allocating 8Gi of memory to each CockroachDB node, allocate 2Gi to cache and 2Gi to max-sql-memory.

      icon/buttons/copy
      conf:
        cache: "2Gi"
        max-sql-memory: "2Gi"
      

      The Helm chart defaults to a secure deployment by automatically setting tls.enabled to true.

      Note:

      By default, the Helm chart will generate and sign 1 client and 1 node certificate to secure the cluster. To authenticate using your own CA, see Certificate management.

    Refer to the CockroachDB Helm chart's values.yaml template.

  4. Install the CockroachDB Helm chart, specifying your custom values file.

    Provide a "release" name to identify and track this particular deployment of the chart, and override the default values with those in my-values.yaml.

    Note:

    This tutorial uses my-release as the release name. If you use a different value, be sure to adjust the release name in subsequent commands.

    Warning:

    To allow the CockroachDB pods to successfully deploy, do not set the --wait flag when using Helm commands.

    icon/buttons/copy
    $ helm install my-release --values {custom-values}.yaml cockroachdb/cockroachdb
    

    Behind the scenes, this command uses our cockroachdb-statefulset.yaml file to create the StatefulSet that automatically creates 3 pods, each with a CockroachDB node running inside it, where each pod has distinguishable network identity and always binds back to the same persistent storage on restart.

  5. Confirm that CockroachDB cluster initialization has completed successfully, with the pods for CockroachDB showing 1/1 under READY and the pod for initialization showing COMPLETED under STATUS:

    icon/buttons/copy
    $ kubectl get pods
    
    NAME                                READY     STATUS      RESTARTS   AGE
    my-release-cockroachdb-0            1/1       Running     0          8m
    my-release-cockroachdb-1            1/1       Running     0          8m
    my-release-cockroachdb-2            1/1       Running     0          8m
    my-release-cockroachdb-init-hxzsc   0/1       Completed   0          1h
    
  6. Confirm that the persistent volumes and corresponding claims were created successfully for all three pods:

    icon/buttons/copy
    $ kubectl get pv
    
    NAME                                       CAPACITY   ACCESS MODES   RECLAIM POLICY   STATUS    CLAIM                                      STORAGECLASS   REASON    AGE
    pvc-71019b3a-fc67-11e8-a606-080027ba45e5   100Gi      RWO            Delete           Bound     default/datadir-my-release-cockroachdb-0   standard                 11m
    pvc-7108e172-fc67-11e8-a606-080027ba45e5   100Gi      RWO            Delete           Bound     default/datadir-my-release-cockroachdb-1   standard                 11m
    pvc-710dcb66-fc67-11e8-a606-080027ba45e5   100Gi      RWO            Delete           Bound     default/datadir-my-release-cockroachdb-2   standard                 11m
    
Tip:

The StatefulSet configuration sets all CockroachDB nodes to log to stderr, so if you ever need access to logs for a pod, use kubectl logs <podname> rather than checking the log on the persistent volume.

Step 3. Use the built-in SQL client

  1. To use the CockroachDB SQL client, first launch a secure pod running the cockroach binary.

    icon/buttons/copy
    $ kubectl create \
    -f https://raw.githubusercontent.com/cockroachdb/cockroach-operator/v2.16.1/examples/client-secure-operator.yaml
    
  2. Get a shell into the pod and start the CockroachDB built-in SQL client:

    icon/buttons/copy
    $ kubectl exec -it cockroachdb-client-secure \
    -- ./cockroach sql \
    --certs-dir=/cockroach/cockroach-certs \
    --host=cockroachdb-public
    
    # Welcome to the CockroachDB SQL shell.
    # All statements must be terminated by a semicolon.
    # To exit, type: \q.
    #
    # Server version: CockroachDB CCL v21.1.0 (x86_64-unknown-linux-gnu, built 2021/04/23 13:54:57, go1.13.14) (same version as client)
    # Cluster ID: a96791d9-998c-4683-a3d3-edbf425bbf11
    #
    # Enter \? for a brief introduction.
    #
    root@cockroachdb-public:26257/defaultdb>
    
  3. Run some basic CockroachDB SQL statements:

    icon/buttons/copy
    > CREATE DATABASE bank;
    
    icon/buttons/copy
    > CREATE TABLE bank.accounts (id INT PRIMARY KEY, balance DECIMAL);
    
    icon/buttons/copy
    > INSERT INTO bank.accounts VALUES (1, 1000.50);
    
    icon/buttons/copy
    > SELECT * FROM bank.accounts;
    
      id | balance
    +----+---------+
       1 | 1000.50
    (1 row)
    
  4. Create a user with a password:

    icon/buttons/copy
    > CREATE USER roach WITH PASSWORD 'Q7gc8rEdS';
    

    You will need this username and password to access the DB Console later.

  5. Exit the SQL shell and pod:

    icon/buttons/copy
    > \q
    
  1. To use the CockroachDB SQL client, first launch a secure pod running the cockroach binary.

    icon/buttons/copy
    $ kubectl create \
    -f https://raw.githubusercontent.com/cockroachdb/cockroach/master/cloud/kubernetes/bring-your-own-certs/client.yaml
    
    pod/cockroachdb-client-secure created
    
  2. Get a shell into the pod and start the CockroachDB built-in SQL client:

    icon/buttons/copy
    $ kubectl exec -it cockroachdb-client-secure \
    -- ./cockroach sql \
    --certs-dir=/cockroach-certs \
    --host=cockroachdb-public
    
    # Welcome to the cockroach SQL interface.
    # All statements must be terminated by a semicolon.
    # To exit: CTRL + D.
    #
    # Client version: CockroachDB CCL v19.1.0 (x86_64-unknown-linux-gnu, built 2019/04/29 18:36:40, go1.11.6)
    # Server version: CockroachDB CCL v19.1.0 (x86_64-unknown-linux-gnu, built 2019/04/29 18:36:40, go1.11.6)
    
    # Cluster ID: 256a8705-e348-4e3a-ab12-e1aba96857e4
    #
    # Enter \? for a brief introduction.
    #
    root@cockroachdb-public:26257/defaultdb>
    
    Tip:

    This pod will continue running indefinitely, so any time you need to reopen the built-in SQL client or run any other cockroach client commands (e.g., cockroach node), repeat step 2 using the appropriate cockroach command.

    If you'd prefer to delete the pod and recreate it when needed, run kubectl delete pod cockroachdb-client-secure.

  3. Run some basic CockroachDB SQL statements:

    icon/buttons/copy
    > CREATE DATABASE bank;
    
    icon/buttons/copy
    > CREATE TABLE bank.accounts (id INT PRIMARY KEY, balance DECIMAL);
    
    icon/buttons/copy
    > INSERT INTO bank.accounts VALUES (1, 1000.50);
    
    icon/buttons/copy
    > SELECT * FROM bank.accounts;
    
      id | balance
    +----+---------+
       1 | 1000.50
    (1 row)
    
  4. Create a user with a password:

    icon/buttons/copy
    > CREATE USER roach WITH PASSWORD 'Q7gc8rEdS';
    

    You will need this username and password to access the DB Console later.

  5. Exit the SQL shell and pod:

    icon/buttons/copy
    > \q
    

From your local workstation, use our client-secure.yaml file to launch a pod and keep it running indefinitely.

  1. Download the file:

    icon/buttons/copy
    $ curl -OOOOOOOOO \
    https://raw.githubusercontent.com/cockroachdb/helm-charts/master/examples/client-secure.yaml
    
  2. In the file, set the following values:

    • spec.serviceAccountName: my-release-cockroachdb
    • spec.image: cockroachdb/cockroach: {your CockroachDB version}
    • spec.volumes[0].project.sources[0].secret.name: my-release-cockroachdb-client-secret
  3. Use the file to launch a pod and keep it running indefinitely:

    icon/buttons/copy
    $ kubectl create -f client-secure.yaml
    
    pod "cockroachdb-client-secure" created
    
  4. Get a shell into the pod and start the CockroachDB built-in SQL client:

    icon/buttons/copy
    $ kubectl exec -it cockroachdb-client-secure \
    -- ./cockroach sql \
    --certs-dir=./cockroach-certs \
    --host=my-release-cockroachdb-public
    
    # Welcome to the cockroach SQL interface.
    # All statements must be terminated by a semicolon.
    # To exit: CTRL + D.
    #
    # Client version: CockroachDB CCL v19.1.0 (x86_64-unknown-linux-gnu, built 2019/04/29 18:36:40, go1.11.6)
    # Server version: CockroachDB CCL v19.1.0 (x86_64-unknown-linux-gnu, built 2019/04/29 18:36:40, go1.11.6)
    
    # Cluster ID: 256a8705-e348-4e3a-ab12-e1aba96857e4
    #
    # Enter \? for a brief introduction.
    #
    root@my-release-cockroachdb-public:26257/defaultdb>
    
    Tip:

    This pod will continue running indefinitely, so any time you need to reopen the built-in SQL client or run any other cockroach client commands (e.g., cockroach node), repeat step 2 using the appropriate cockroach command.

    If you'd prefer to delete the pod and recreate it when needed, run kubectl delete pod cockroachdb-client-secure.

  5. Run some basic CockroachDB SQL statements:

    icon/buttons/copy
    > CREATE DATABASE bank;
    
    icon/buttons/copy
    > CREATE TABLE bank.accounts (id INT PRIMARY KEY, balance DECIMAL);
    
    icon/buttons/copy
    > INSERT INTO bank.accounts VALUES (1, 1000.50);
    
    icon/buttons/copy
    > SELECT * FROM bank.accounts;
    
      id | balance
    +----+---------+
       1 | 1000.50
    (1 row)
    
  6. Create a user with a password:

    icon/buttons/copy
    > CREATE USER roach WITH PASSWORD 'Q7gc8rEdS';
    

    You will need this username and password to access the DB Console later.

  7. Exit the SQL shell and pod:

    icon/buttons/copy
    > \q
    

Step 4. Access the DB Console

To access the cluster's DB Console:

  1. On secure clusters, certain pages of the DB Console can only be accessed by admin users.

    Get a shell into the pod and start the CockroachDB built-in SQL client:

    icon/buttons/copy
    $ kubectl exec -it cockroachdb-client-secure \
    -- ./cockroach sql \
    --certs-dir=/cockroach/cockroach-certs \
    --host=cockroachdb-public
    
    icon/buttons/copy
    $ kubectl exec -it cockroachdb-client-secure \
    -- ./cockroach sql \
    --certs-dir=/cockroach-certs \
    --host=cockroachdb-public
    

    $ kubectl exec -it cockroachdb-client-secure \ -- ./cockroach sql \ --certs-dir=/cockroach-certs \ --host=my-release-cockroachdb-public

  2. Assign roach to the admin role (you only need to do this once):

    icon/buttons/copy
    > GRANT admin TO roach;
    
  3. Exit the SQL shell and pod:

    icon/buttons/copy
    > \q
    
  4. In a new terminal window, port-forward from your local machine to the cockroachdb-public service:

    icon/buttons/copy
    $ kubectl port-forward service/cockroachdb-public 8080
    
    icon/buttons/copy
    $ kubectl port-forward service/cockroachdb-public 8080
    
    icon/buttons/copy
    $ kubectl port-forward service/my-release-cockroachdb-public 8080
    
    Forwarding from 127.0.0.1:8080 -> 8080
    
    Note:
    The port-forward command must be run on the same machine as the web browser in which you want to view the DB Console. If you have been running these commands from a cloud instance or other non-local shell, you will not be able to view the UI without configuring kubectl locally and running the above port-forward command on your local machine.
  5. Go to https://localhost:8080 and log in with the username and password you created earlier.

    Note:

    If you are using Google Chrome, and you are getting an error about not being able to reach localhost because its certificate has been revoked, go to chrome://flags/#allow-insecure-localhost, enable "Allow invalid certificates for resources loaded from localhost", and then restart the browser. Enabling this Chrome feature degrades security for all sites running on localhost, not just CockroachDB's DB Console, so be sure to enable the feature only temporarily.

  6. In the UI, verify that the cluster is running as expected:

    • View the Node List to ensure that all nodes successfully joined the cluster.
    • Click the Databases tab on the left to verify that bank is listed.

Step 5. Stop the cluster

  • If you plan to restart the cluster, use the minikube stop command. This shuts down the minikube virtual machine but preserves all the resources you created:

    icon/buttons/copy
    minikube stop
    
    Stopping local Kubernetes cluster...
    Machine stopped.
    

    You can restore the cluster to its previous state with minikube start.

  • If you do not plan to restart the cluster, use the minikube delete command. This shuts down and deletes the minikube virtual machine and all the resources you created, including persistent volumes:

    icon/buttons/copy
    minikube delete
    
    Deleting local Kubernetes cluster...
    Machine deleted.
    
    Tip:

    To retain logs, copy them from each pod's stderr before deleting the cluster and all its resources. To access a pod's standard error stream, run kubectl logs &lt;podname&gt;.

See also

Explore other CockroachDB benefits and features:

You might also want to learn how to orchestrate a production deployment of CockroachDB with Kubernetes.


Yes No
On this page

Yes No